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Motivation

U.S. Gas Transmission System

@ How to exploit mutiple problem embedded structure?
@ Tools:

Structure Exploiting Parallel Interior-Point Solver for NLP
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Introduction

Interior Point Methods (IPM)

Nonlinear Program

min f(x) s.t. c(x) 0 (NLP)
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X = diag(x), S = diag(s)
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Introduction

Interior Point Methods (IPM)

Barrier Problem

min f(x uZInx, st. ¢(x) = 0 (NLP,)

KKT Conditions

vi(x) —ve(x)A—s = 0
ve'x = 0 (KKT,)
XSe = e
x,s > 0

X = diag(x), S = diag(s)

@ Introduce logarithmic barriers for x > 0
@ For ;1 — 0 solution of (NLP,) converges to solution of (NLP)
@ System (KKT,) can be solved by Newton's Method
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Introduction PIPS-NLP Gas Networl

Newton-Step in IPM

Newton-Step: Full System

H AT —I Ax vf+Aly —z
A 0 0 Ay | =— c(x)
Z 0 X Az XZe — pe

where A is the constraint Jacobian, and H is the Hessian of the
Lagrangian function. © = X~1S, X = diag(x), S = diag(s).

Newton-Step: Augmented System(IPM) ®d = b
H+o AT [ Aax]_ [véu+ATy
A 0 Ay | c(x)

@ Augmented system is sparse and symmetric.
@ The structure of Newton's system does not change between
IPM iterations.



Introduction
Parallel Linear Algebra for IPM

Newton-Step: Augmented System(IPM)

W AT ][ Ax by _
40 [ ]-[5]wonee
For a structured problem, if:
Matrix A Matrix W
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Introduction
Structures of A, W and ¢:
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Introduction
Structures of A, W and &:
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Bordered block-diagonal structure in Augmented System!
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Introduction PIPS-NLP

Exploiting Structure in IPM

Block-Factorization of Augmented System Matrix

4)1 BlT X1 b1

0. B | | x| |bs

Bi--- B, 9 X0 bo
—_————  ——

() d b

-
Solution of Block-system by Schur-complement

The solution to ®x = b is
xo = Clby, bo=by—3;Bid; b
Xj = ¢i_1(b,'— BI-TX()), = 1,...,!7
where C is the Schur-complement
C=®o— ) BB’
i=1

= only need to factor ®;, not ®
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Introduction

Paraller Linear Algebra for the Structured Problem

Parallel IPM Implementation: For LP and QP

@ OOPS: Jacek Gondzio and Andreas Grothey: Exploiting
structure in parallel implementation of interior point methods
for optimization.

@ PIPS: Cosmin G. Petra and Mihai Anitescu: A preconditioning
technique for Schur complement systems arising in stochastic
optimization.

Now, we have PIPS-NLP for NLP!
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PIPS-NLP

PIPS-NLP
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Introduction PIPS-NLP

PIPS-NLP

PIPS-NLP is parallel nonliear IPM solver, based on PIPS for
LP/QP.

Structure comes from (but not limited to)

@ Stochastic Programming (scenarios)
@ Problem Characteristics (PDE constraints)
@ Network (partitions)

@ Nested structure

v
Easy access:

o AMPL-interface

@ Pyomo-interface
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PIPS-NLP

ence of the Algorithm

@ NLP needs more work to ensure global convergence: filter
technique (IPOPT?!), which requires inertia (number of
positive and negative eigenvalue).

Structured Problem: Inertia Detection may be hard.

o Inertia(®) = Inertia(C) + > _; Inertia(®P;)
Not Clear How to Do it (Central vs. Block-Based)

@ Schur Complement is Large or Indefinite

!Andreas Wichter and Lorenz T. Biegler. “On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear programming”.
In: Math. Program. 106.1, Ser. A (2006), pp. 25-57. 1sSN: 0025-5610.
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Global Convergence of the Algorithm

Cases Where Inertia Detection is Difficult (If Not Impossible):

@ Full System or Individual Blocks are Solved Using lterative
Schemes, e.g, multi-grid

@ Numerically unstable on large-scale prob. ( Some linear
system solvers can give us inertia infomation, e.g. MAbL7, but
its pivot tolerence plays a very important role.)

@ Reduced Solver is Applied.

@ Nested Structure.
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ion PIPS-NLP

Line Search with Filter

Inertia Correction: Rigorous Detection

fmatrico— | W AT -
o Check if matrix ® = A0 has correct inertia. (MA57
or Pardiso)
T
@ Increase the regularization term § in ®5 = [ WZ of "% ]

until its inertia is correct.

@ Solve system ®s5d = b.

-

dWd test: Relaxed Detection

@ Check if d" Wd has sufficient curvature for global
convergence:
d"Wd > 60d"d, where 6 is a constant decreasing by .

@ Increase regularization ‘only’ for the iteration whose
d"(W +6l)d <6d'd.
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PIPS-NLP
Relaxed Curvature test

Pros and Cons of Relaxed Detection

@ Pros:
Can accept decent direction d even if current inertia is wrong.
Global convergence is also guaranteeded. Re-factorization is
expensivel > 90% time of each lter!

@ Cons:
Cannot guarantee second order optimality condition, but
neither does inertia correction.

In practice?
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PIPS-NLP
Relaxed Curvature test

Pros and Cons of Relaxed Detection

@ Pros:
Can accept decent direction d even if current inertia is wrong.
Global convergence is also guaranteeded. Re-factorization is
expensivel > 90% time of each lter!

@ Cons:
Cannot guarantee second order optimality condition, but
neither does inertia correction.

In practice?
@ CUTEr test problems.
@ Energy application.
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PIPS-NLP

CUTEr Experiments : (iteration)
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PIPS-NLP

CUTEr Experiments : (factorization)
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PIPS-NLP
Application.:

Problem Domain Algorithm  Objective  Iter Fact
building_det Buildings d"Wd  1.74x10% 127 161
LDLT 1.74x10% 180 341
building_stoch_.A  Buildings d"Wd  1.89x103 167 181
LDLT 1.89x10° 170 270
building_stoch. B Buildings d"™Wd  1.95x10% 319 417
LDLT 1.95x10° 170 270
IEEE_162cart Power Grid dTWd 1.64x10° 23 23
LDLT 1.64x10° 104 330
stochPDEgas_ A Gas Network d'Wd  1.73x10> 35 35
LDLT 1.73x10> 34 35
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Stochastic Gas Networks: Stochastic Structure + PDE Structure

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks



Gas Network

Line-Pack (Storage) Management

Compressor Boost Demdand
Supply Pressure Ae{? Pey(Ley) = O,
. i Demand Pressure \
ni > > N3
b 2
On,

5 Suction Pressure g, (0) = O, + Aby,

Supply Flow Discharge Pressure
3 "__‘__"_"'"__':
i
< P
= [
< [
E [
3 [
= [
Loboi

» Time
0< > T4 < > T
Preparation Period Operation Period
(15t Stage) (2%t Stage)
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Gas Network

PDE Gas Model

Inlet & Outlet Supply & Demand
Pipe Flows Flows
0= Z i (w) — Z ‘”” )+ Z 516 ( Z djt(w), n eEN,teT,weQ Network
LeLin felCont 1€ESy J€Dn
D), w) — p (W w (W — —
Peer1 k(@) = peek@) 4fu+1k+l( ) = feer1k(@) lelLiteT keXweQ
AT Az,
Jear1k (W) — ferp(w) o PtrLi (@ ) = Pee+1k(w) Conseévation
= —C2e
AT Axy Momentum
w _ _
. Jea+1k (W) fop+1,k( )\‘ beliteT ke® weq
Pet+1,k(@)
04N, (W) = fE¥ (W), L€ Lt JwEQ
Pipe Flows Jeg N, (W) = f7{ (w) eT,we
fera(w) = fit(w), L€ L,teT,weQ Boundary
PN (@) = Opec(ty (W), L€ Lyt € Tow € Q Conditions

Pipe Pressures P2,:,1(w) = Osnd()4(w), L € Lp,t € T,w € Q

Pl (@) = Ogna(ey 1(w) + Abpa(w), L € Loyt € T, w € Q
Compressor in Osnd(e) 1(w) + Abgs(w)
Pea(w) = ca fi3(w) ((‘““7‘

P
ower Osna(e),t(w)

Compressor

8
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Gas Network

PDE Gas Model: Objective

Define Per Scenario Cost

Power Demand Tracking

W) =D cerPra()AT+Y Y ca(dp(w) — dja(w))*Ar

teT eLa teT i€D Terminal Constraints

At Z Z er(perk(w) — peak(w))? Az + Z Z er (ferp(w) — fe1x(w))*Aze,

w e
keX el keX teL

Objective Function
U= (1-¢E[p(w)] +£CVaR [p(w)] -
where,
CVaR [p(w)] = mjn v + T—E (@) =11,

Soft Constraints to Enforce Demand Flows (Improves Flexibility)

Terminal Constraints Critical (System Required to Return to Initial State)
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Gas Network

PDE Gas Model: System Constraint

Osup(i) ¢ (W) = 0;F, i €S, teT,weQ

Supply Pressures

Al (w) = A8, L€ LyweQ

(W o
0=—c ;%”f“k() lelLizeX ,weN Initial Conditions

0= 702‘117/.1.“1(#) Pe1k(w) S AV C) Nierk@) 5c o c - weaq

Az, M pk(w)

Pl <P(w)<Pl teLl,yteT,we
suc,L suc,U =
0y ! < Oand(e) (W) < 0,7, L€ Lot € T,w€Q
H'/’\ < om0y 1(@) + Abriey 1(w) < H;/,\,('. lelyteT weq Initial Conditions

€ U T
0F < Ogem(jye(w) < 07™Y, jeDteTweq

Ayt (w) = E[AOt(w)], € € La,t € {1.‘Td}.w e\ {1} Non-Anticipativity
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Gas Network
Gas Network Problem: Stochastic Structure

Ps Fo
) Pl F1

PR

I:>ICI |:ICI

Problem (1 Scenario)  Problem with |C| + 1 Scenarios

@ Control variables are independent to scenarios.
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Gas Network
Numerical Results: Scalability

No.Sce n Obj Iters  Time(hh:mm:ss) MPI Proc.
96 1,930,752 1.39x10% 42 05:20:01 1
96 1,930,752 1.39x10% 41 01:05:35 8
96 1,930,752 1.39x102 40 00:31:15 16
96 1,930,752 1.39x10% 42 00:21:02 24
96 1,930,752 1.39x102 41 00:16:13 32
96 1,930,752 1.39x102 41 00:10:59 48
96 1,930,752 1.39x102 41 00:05:53 96

Speedup

f

3 a
Number of MPI Processes (x8)
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Gas Network
Gas Network Problem: PDE Structure

Newton-Step: “Augmented System(IPM)" for each scenario

W, Al .
¢i—[Ai 0 ],V/GS

where A; contains PDE constraints.

Split A; into [A, A,] (ignore 'i"), where u is the contral variables
and x is the state variables.

Wie Wi Al X b,
didi=b; — | Wy W, A ul|l=1hy,
A, A, 0 A b,

A is square and invertible (but not symmetric)
— Do computation in the reduced space!
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PIPS-NLP Gas Network

Reduced Space

Solve Problem in Reduced Space!

@ Step.1l: Solve following equation to get u:

(Wuu - WuxA;lAu - AIA;T qu + AIA;T WXXA;IAU)U
=b, — Al AT (by — W A7 b)) — Wi A by,

@ Step.2: Solve following equation to get x:
x = A7l (by — Ayu)

@ Step.3: Solve following equation to get A:

A = A7 T(by — Wiex — Wiu)

No LDL" of ¢; — A, is isolated — A;! can be obtained by user
defined algorithm.
Dense LU for reduced hessian (Lhs matrix in Step 1)
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Gas Network
Numerical Results

No.Sce n Obj Iters  Time(hh:mm:ss) MPI Proc.
96 1,930,752 1.39x10%> 42 00:29:54 8
96 1,930,752 1.39x10> 42 00:14:45 16
96 1,930,752 1.39x10% 42 00:10:00 24
96 1,930,752 1.39x102 42 00:07:36 32
96 1,930,752 1.39x10% 42 00:05:14 48
96 1,930,752 1.39x102 42 00:02:54 96

Table: Scalability: Reduced space (Umfpack is applied to do LU
factorization and corresponding backsolve.)

No.Sce n Obj Iters  Time(hh:mm:ss) MPI Proc.
96 1,930,752 1.39x10%> 42 01:13:16 8
96 1,930,752 1.39x10% 42 00:38:18 16
96 1,930,752 1.39x10> 42 00:24:55 24
96 1,930,752 1.39x102 42 00:19:23 32
96 1,930,752 1.39x102 42 00:12:42 48
96 1,930,752 1.39x10% 42 00:06:48 96

Table: Scalability: Full space
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Gas Network

Numerical Results

No.Sce n Obj Iters Time(hh:mm:ss) MPI Proc.
200 3,917,328 1.20x 107 55 00:27:16 20
200 3,917,328 1.20x10% 55 00:14:16 40
200 3,917,328 1.20x10? 55 00:06:01 100
200 3,917,328 1.20x 102 55 00:03:14 200

Table: Scalability: Reduced space (Umfpack)

No.Sce n Obj Iters Time(hh:mm:ss) MPI Proc.
200 3,917,328 1.20x 107 55 01:01:33 20
200 3,917,328 1.20x10? 55 00:31:11 40
200 3,917,328 1.20x10° 54 00:12:36 100
200 3,917,328 1.20x10° 55 00:06:38 200

Table: Scalability: Full space

womLinear
= pIpS-NLP-Full

PIPSNLP-AS

1 2 5 10

Number f MPI Processes (x20)
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Intro tion PIPS-NLP Gas Network

AMPL Input

# define suffixes:
suffix pipsNLP_DecisionVar_in, IN;
suffix pipsNLP_1stStageVar_in, IN;
param idx_1stVar;
param idx_decVar;

# assign suffixes for each scenario;
for k in 1..K_All do

let idx_1stVar := 1;

let idx_decVar := 1;

# define first stage variables

for i in LINK,t in TIME: t < TDEC do
let dp[j,i,t].pipsNLP_1stStageVar.in := idx_1stVar;
let idx_1stVar := idx_1stVar + 1;

end for

## define contral variables in each scenario

for i in LINK,t in TIME: t > TDEC do
let dp[j,i,t].pipsNLP_DecisionVar_in := idx_decVar;
let idx_decVar := idx_decVar + 1;

end for

# write nl file
write (" bpdegas_paper_Dec” & k);
end for

Straightforward and ‘no’ additional time for ordering derivatives (<0.1s

for gas model
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Gas Network

Conclusions

PIPS-NLP

@ Parallel NLP solver.

@ Accept multiple structure, e.g: PDE constraints + network
constraints.

@ Support AMPL/PYOMO input.

@ Other applications: parameter estimation, general stochastic
optimal contral problem, robust dessign and network
partitioning.

Nai-Yuan Chiang, Victor M Zavala Stochastic Optimization of Gas Networks



Int ion PIPS-NLP Gas Network

Conclusions

PIPS-NLP

@ Parallel NLP solver.

@ Accept multiple structure, e.g: PDE constraints + network
constraints.

@ Support AMPL/PYOMO input.

@ Other applications: parameter estimation, general stochastic
optimal contral problem, robust dessign and network
partitioning.

@ Exploit multi-stage stochastic structure and multi-grid
multi-level algorithm for problems with PDE and network
constraints.
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Introduction PIPS-NLP Gas Network

Conclusions

@ Thank you for your attention!
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